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EXACT SET OF FLUID EQUATIONS FOR A QUASI-NEUTRAL PLASMA
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Closure of this system requires specification of the stress tensors P, and the collisional

friction forces F,



I. INTRODUCTORY CONSIDERATIONS

Except in a high-collisionality regime, a rigorous closure of the set of fluid equations
necessitates kinetic theory.

Because of their high dimensionality, any practical solutions of the kinetic equations
involve restrictive approximations to a significant degree.

The fluid theory of the higher-rank moments of the distribution function provides
exact or less restrictive constraints on those kinetic solutions, which should be worth
exploiting when developing closure schemes.

Higher-rank fluid moment analyses rely on a number of asymptotic ordering choices.
In particular it is worth reviewing the implications of different possible assumptions on:

k, p; ordering
collisionality regime
w/Q and u; /vy,; orderings

reduction to eliminate the fast magnetosonic wave



A) Gyrokinetic ordering
Allows arbitrary perpendicular fluctuation wavenumbers, &k, p; ~ 1
Requires: small amplitude fluctuations, éB/B ~ F/F ~ p;/L < 1
small ratio, kj/k; < 1, of fluctuation wavenumbers
small electric field, E/(vy;B) ~ p;/L < 1
reduced form of 0B that eliminates the fast magnetosonic wave
isotropic lowest-order distribution functions in practical applications
= B) Drift-kinetic ordering
Requires small perpendicular fluctuation wavenumbers, &, p; ~ p;/L < 1
Allows: arbitrary amplitude fluctuations, 6B/B ~ 0F/F ~ 1
comparable parallel and perpendicular fluctuation wavenumbers
large electric field, E/(vy,;B) ~ 1
fully electromagnetic fluctuations including fast magnetosonic waves

strong anisotropies and far from Maxwellian distribution functions



COLLISIONALITY REGIME

A) High collisionality (vi,./v" < L)
Allows a consistent closure of the fluid equations (Braginskii ...)

Little relevance to magnetic fusion conditions

= B) Low collisionality (vy,./v" % L)
Most relevant to magnetic fusion conditions
Leads in general to: far from Maxwellian distribution functions
strong anisotropy (p,| — Pal ~ Pa - )

Near Maxwellian distribution functions can be justified only near closed flux

surface equilibria, hence small amplitude fluctuations



w/Q AND u; /v ORDERINGS

= A) MHD ordering (fast dynamics)
6~ pi/L<K1
CU/QCZ' ~ 0

Wi [V ~ 1

= B) Drift ordering (slow dynamics near equilibrium)
o~ pi/L<K1
w/ch’ ~ W*Q/Qci ~ §*
Wi [ Vihi ~ Usa/Vini ~ 0
Consistent implementation of the drift ordering requires either a second order
accurate evaluation of the CGL pressures (i.e. p; ; = O(mnvg,;) + O(6*mn;vj,;)
which can only be accomplished kinetically), or the introduction of a small

parallel gradient (b -V = O(6%/L)) subsidiary ordering



Calling P; = p; 1 + (p;) — piL)bb + |5¢, with |SZ = ISZ . (bb) = 0, the parallel component of

the ion momentum conservation equation is:

0 u;
ot

+ (U—i : V)ul] + b- vaH — (pZH — pu_) b- V(ln B) + b- (V : |§,Z — emiE — Fgou) = O,

In the drift ordering, m;n; b - [0u;/0t + (u; - V)w;] = O(6*mnv},;/L). Therefore, to obtain
the leading order u;; = O(dvy,;), the ion parallel momentum equation must be solved

correct to O(6°m;nv7,./L). This requires either knowing the CGL pressures correct to

O(6°m;nv},.) or ordering b - V = O(6%/L).

CGL pressures correct to O(§°m;n;v?;) cannot be obtained from their fluid equations:
1
2[8p2~||/(‘9t + V- (piHuiﬂ +V-qp=.. and Opi/Ot+V - -(pow)+V -qr=..

since this would require knowing u; correct to O(é%thi) and knowing the heat fluxes q;z 1

correct to O(8*mnv},,).



REDUCTION TO ELIMINATE THE FAST MAGNETOSONIC WAVE

= A) Full systems:
No small parameters other than p;/L, w/Q.; (possibly u;/vi;), m./m; and p;v< /vy,
General geometry and strongly inhomogeneous magnetic field
No distinction between parallel and perpendicular length scales

Include the fast magnetosonic wave

= B) Reduced systems:
Separate parallel and perpendicular length scales in large aspect ratio geometry
Subsidiary expansion parameter ¢ ~ L, /L) ~ k| /k; < 1besides d ~ p;/L, <1
Weakly inhomogeneous magnetic field ( ||VB|| ~ B/L)
Eliminate the fast magnetosonic wave

Allow a consistent fluid treatment of the w ~ w,,, u; ~ u,, drift ordering



II. GENERAL FLUID FORMALISM

The underlying kinetic description is assumed given by
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with the Fokker-Plank collision operator:
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For each species and dropping the species index «, define the following fluid moments:
n(x,t) = /d3v f(v,x,t),
n(x,t) u(x,t) = /d3v v f(v,x,1),
Fol(x,t) = m/d3v (v —u) C(v,x,1),
P(x,t) = m/d3V (v—u)(v—u) f(v,x,1),
G (x,t) = m/d?’v (v—u)(v—u) C(v,x,1),
Qx,t) = m [dv (v —u)(v-u)v-u) f(v,x,1),
H"(x,t) = m/d3V (v —u)(v—-—u)(v—u) C(v,x,1),

R(x,t) = mz/d?’v (v—u)(v—u)(v—u)(v—u) f(v,x,1).



Further define

Piv = pibim + () —pL)bibe + Py = PSE" + Py
with P, = Pubby = 0,
or
Pir = p o + My = pop + (o) —po) (b — 6x/3) + Py
with p = (p +2p1)/3 and N, =0,
and
Qi = qr by + (2g5) — 3qr))bjbeb; + Qi = ijl + Qi
with Qijsbr = Qbbb = 0,
or

Qi = (2q1/5) dyuby + Qi = (2q)/5) Sy + (2am) — 3ary) (bbb — Sijxbn/5) + Qi

with q) = 4B| + 47| and @jjkbk = 0.



For the fourth-rank moment, define
1 N
Rikim = — Pyx P + Rjm
n
and

Rjtim = (271 /5 —7a/10) OljkOum + Ta Opkbiby /2 + (27 — 271 — TFa/2) bibybibn, + Rk

with ﬁjj” = ﬁjﬂmblbm = E{jklmbjbkblbm = 0.

The anisotropic generalization of Grad’s thirteen moment collisionless closure (now
twenty moment) corresponds to setting R=0. This yields a model that includes all the
convective and diamagnetic fluid effects, but neglects the purely kinetic effects such as

wave-particle resonances and collisionless dissipation.



EXACT DYNAMIC EVOLUTION EQUATIONS FOR THE CGL PART OF THE
STRESS TENSOR

38}? . _coll __
2{(%+v-(pu)]+P.(vu)+Vq gl = 0
and
1.0 b
2;t”+v-(p,,u)}—b-P-[at+(u-V)b—(b-V)u—bx(V><u)}—

~b-Q:(Vb) + V-qz — ¢5" = 0.

Here we have defined the heat flux vectors and collisional heat generation rates:
q=gb+ar = Q:1/2 = (m/2) [dv (v—u)|v—ul f(v.x,1),
s = qpb+daqp. = Q:(bb)/2 = (m/2)/d3v (v—nu)[(v—u)-b? f(v,x,1),
gl = G 1/2 = (m/2)/d3v v —ul? C(v,x,t),

gg)” = G« . (bb)/2 = (m/2)/d3v (v —u)-b]* C(v,x,t) .



PERTURBATIVE EXPRESSIONS IN POWERS OF § FOR THE PERPENDICULAR
PARTS OF THE STRESS AND STRESS-FLUX TENSORS, P AND Q

P and Q can be split into terms that do and do not depend explicitly on the collision

frequencies:

A ~ coll A qyr A ~ coll A gyr

CONSIDERING THE MHD (FAST DYNAMICS) ORDERING:
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Similarly retaining the leading terms in the MHD ordering:
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where

k=(b-V)b and w=Vxu.



CONSIDERING THE DRIFT ORDERING WITH SMALL PARALLEL GRADIENTS
AND WEAKLY INHOMOGENEOUS MAGNETIC FIELD:

Introduce the subsidiary ordering

b-V~Lit~el' <L} and IVB|| ~ BL;' ~eBL' < BL" .

Also, order the heat fluxes as ¢ ~ up ~ dvy,;p. Then, keeping the lowest significant order

terms, we have:

L ,coll . 3/2
~ coll PV m 5997 m- o
P = 0 op |, P = 0O —4d6p),
BT = o( "0 S ap). IR = 0 )
~ coll m co
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For the perpendicular part of the stress-flux tensor in the drift ordering with small

parallel gradients and weakly inhomogeneous magnetic field:
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COLLISIONLESS CLOSURE TERMS

Besides the moments of the collision operator, the still unspecified terms needed to

close the fluid equations are:

The two independent parallel heat fluxes (qr = q| — ¢p|):

q = b-Q:1/2 = (m/2)/d3v (v —=nu)-b] |[v—-ul]® f(v,x,1),

qp = b-Q:(bb)/2 = (m/2)/d3v (v —u)-b)® f(v,x,1) .

The q, and qp, terms in the perpendicular heat fluxes :

-1 (0) , (x(0) _ ~(0)
qJ_—e—BbX[VTJ_ —l—(TH —TJ_ )K)},

. 1 _ _ _ _ _
qpL = e—Bb X {V(rf) + 7“20))/5 + (rﬁo) — rf) - rf))ﬁ:] .



The three scalars ff) , f‘(’())

and 7\ (or combinations thereof), are the three indepen-
dent components of the fourth-rank tensor R in its zero-Larmor-radius limit. They are
moments of the difference between the actual zeroth-order distribution function and a

two-temperature Maxwellian, and therefore are well suited for a Landau-fluid closure

approximation. Specifically, they are:
P = (m?/4) [dv |v —ul cos? X (fO — four),
A = (m2) [dv v =l si® A (O four),

P = (m2/4)/d3v v —ul* cos? X (5sin? A — 1) (fO — fonr).

Here, 9 = fO(m|v —ul?/2,\,x,t) is the zero-Larmor-radius distribution function
which depends on the velocity space coordinates through the fluid-rest-frame energy,
m|v—ul*/2 , and the magnetic pitch angle, sinA\ = (v—u)-b/|v—u|, but is independent

of the gyrophase. The two-temperature Maxwellian is

m )3/2 ﬂf/g exp[—

ng(mV—U.QQ,)\,X,t = (—
| x | <27T pL P 2 gt q

mn |v—ul? (COS2 A N sin’ )\ﬂ



Dynamic evolution equations for the parallel heat fluxes ¢ and ¢p| are also available.
However, their finite-Larmor-radius terms involve two further unknown (albeit well de-
fined) scalars stemming from the FLR part of the R tensor. Thus we are left with three

possible options in practice:

a) Evaluate ¢ and gp||, only in their zero-Larmor-radius limit for the fast MHD order-
ing (g ~ gp| ~ pvwi), using the corresponding fluid evolution equations. In this case, the
only collisionless closure variables left are ff), fﬁO) and f&” to account for the collisionless

disssipation and other purely kinetic effects.

b) Use truncated FLR fluid equations for ¢y and ¢z that include the known convective
and diamagnetic terms, ignoring the further unknown FLR terms, and leaving again

only ff), fﬁo) and fgo) as collisionless closure variables.

c) Evaluate ¢ and ¢p| kinetically.



The available dynamic evolution equation for gp| is
% + V- (qBHu) + SQBHb . [(b . V)u] -+ %b . V(]ﬁ) +
ot 2m n

1 3
+ b V(i =2l /5 =2l /5) — (7 =7 =X )b - V(I B)] + ZWZZ”nb Rl gl

s b () - ) D1 b (b V)u b (V< w)] - Q: (bb) = 0

where the first two lines contain the zero-Larmor-radius terms retained in option a),

and the third line contains the FLR terms added in option b).

Here, the new collisional term is

hg' = b-H: (bb)/2 = (m/2) [d’v [(v—u) -b]’ C(v,x,t) .



The available dynamic evolution equation for g7 = g — gp| is

pL(pH - PL)

% + V- (gru) + qpV-u + %b-V(%) - b V(nB) +
+ %[Qb.v(f@+f§>)/5+f§>b-van3)} + %b-FCOH + Rt — el
P, [V(PLH(MM N (29H—2M>|s.(%) N <M>v.(1b.p) n

m n n mmn ' m n

+b-Q:(Vu) — ;[%‘Zﬂu-V)b—(b-V)u—bx(qu)}-():(l—gbb) =0,

where the first two lines contain the zero-Larmor-radius terms retained in option a),

and the last two lines contain the FLR terms added in option b).

The last collisional term is

el = b H /2 = (m/2)/d3v (v —u)-b] |[v—ul* O(v,x,1) .



IN THE DRIFT ORDERING WITH SMALL PARALLEL GRADIENTS AND WEAKLY
INHOMOGENEOUS MAGNETIC FIELD :

Assuming also the slow ordering qp 7| ~ up ~ ovy,;p for the parallel heat fluxes

~(0) 2 2
and 7)) A ~p°/n~mupp

V- (C]B,T||b) = b- VC]B,T|| + C]B,T||V b = O(ed p UthiLll) < (0/0t+u-V)p = O p ’Uthz‘Lll) 5

+(0) _ +(0)
V-q = Vi [V x (eiBb)} + V- [(THQ—BH)bx k| = O(ed pvuilT")
1 A = Y
Veodpr = V(R + 7)) - [V x (5€Bbﬂ + v (- = )b x k| = O(ed pvmiLlT") .

Similarly, the needed contribution of g7 and qr; = q; — g1 to the gyroviscous force in

the ion momentum equation is O(¢) smaller than the leading order terms.

Therefore, this ordering yields a formally consistent collisionless closure.



IT1. SIMPLIFIED SYSTEMS WITH SINGLE ION SPECIES AND
NEGLIGIBLE ELECTRON MASS

Neglecting m./m; < 1, assuming for simplicity that the ions have unit charge and

reintroducing the species indices, the basic set of quasi-neutral fluid equations becomes:

L,
U = u; — —J,
en
] =VxB,
0B
— VxE =0
8t+ X :

1
E=-uxB+ —(jxB-V-P/+F),
ecn

% + V(nuz) = 0,

81» A gyr A CO .
mm[a—l;%—(ui-V)ui} + V- (PS94 PECL 1 P +Pu”> — jxB =0.



III. 1. FULL TWO-FLUID SYSTEM IN THE MHD ORDERING

In the fast dynamics, MHD ordering we have:

5NP2/L<<17 WN(SQciy Uy ™~ Vthi QQHNvthipaa QOzJ_N(s'Uthipa-

Also, assume comparable ion and electron pressures and strong anisotropies:

Pi ~ Pe (pa|| - paJ_) ~ Pa -

The ion terms are as given in the previous Section II.

The electron terms are simplified as the result of the small mass ratio assumption.



SMALL MASS RATIO ELECTRON PRESSURE EQUATIONS:

310pe
ol ot

+ V- (peueﬂ + pV-u, + (pe — peJ_>{b - [(b - V)ue} - V- ue/S} +

+ V- (gb+aer) — g™ =0

and

%%Jrv'(pew@ﬂ + pyb - |(b-V)u| + V- (gpb+asL) + grb-V(n B) — g3 =0,

where the small mass ratio electron perpendicular heat fluxes are:

1

Pe|| + 4pe¢) N Del|(Pe)] — peJ_)K’]

Qel = — €Bb X {pej_v< M n -+ (ieJ_
and
QeBpl = — GLBb X [pej_v@%) + p€||(p€\|n_ peJ_) K’} + (NleBJ_ .



In the limit of negligible mass ratio, the electron parallel heat flux equations yield two

time independent constraints on the parallel gradients of the electron temperatures:

3Per| D (0) 2.0 20 L(0)  ~(0)  ~(0) 3P| coll
b - v(n) + b- V(i —5%—5%) — (fy) =7 —Fep)b- V(InB) + 5 b F =0

and

peL) . peJ_(peH - peJ_)
n n

peyb - V( b-V(lnB) + 5b V(i) + Q) + #%b - V(nB)+ P FOl = 0,

n

These should determine implicitly the electron parallel heat fluxes and provide an

improvement over the adiabatic electron response model.



II1. 2. REDUCED TWO-FLUID SYSTEM IN THE DRIFT ORDERING

Assume the slow dynamics, drift ordering:

5Npi/L<<17 WN(SQQci; uozN(S/Uthia QQHNQQJ_N(S'Uthipa-

Introduce the weakly inhomogenous magnetic field and small parallel gradient order-

ing, in a large aspect ratio toroidal background geometry:

e~ (R—Ry)/Ry~L.,/Lj % 6, kj~b-V ~e -V ~1/Ry~ ek,

B = BOeC—FBl, ’BllNEBQ.

Assume comparable ion and electron pressures with § = O(¢) and strong anisotropies:

Pi ™~ De ~~ GBS, (paH - paJ_) ~ Pa -



In their lowest significant order, the magnetic field and current density are:

B = (Bo—l—Blg) € — e X Vi + O(EQB())

and
. By 2
J = E@ €z — e X VBK — VJ_?ﬂ € + O(EBO/RO) ;
with
By = —B — — (p; ¢ O(e“By) .
1¢ o( e ) By (Pir +per) + O(€By)
Here, we use the notations:
of of der-h) O(ez-h)
“f = : = — d -h = :
Vif = V- (Vif), Vuif opert g ez an \ R T 5y
The lowest-order ion flow velocity is:
u e+1e><<VCI>+1V >+O(5 )
i = u R ——VDi €0UVthi)
¢ € B, ¢ on PiL th

where @ is the electric potential. We further introduce the following notations:

dJf of 1 C1af 1
EJFE)[@,JCL Vif = RyOC B

E_

W, fl  and g, f] = e (VgxVf).



The following reduced system is obtained for the seven coupled scalar fields n , p,| ,

Par (with a=1i,e and e;=—e. =€),y and P :
d'n
=
dt ’

ld/paH - coll — O
2 dt aB )

d/pcu- pOéH - pOzJ_ 1l I
_ = e | N . hco hco _ O7
dt i ( 3e,Bon? ) ™ Pa] +

oY 1 ’
A, v q) - 7V e E— FCO f— O7
g VI | Pell o, €C

1
—V, - (nV D U——V@,
nL(nL) on 1Pil

JU 1 B2 A, ® B

! R7 7 _’_ 7 _|_ e _|_ e +w60ll:O
dt  2Bn min e Byn R 2o (Pil F Pit % pe +pes)]




In the vorticity equation, we defined

App,. ) = 0°piL <(92<D B 82®) A (02pu _82pu)
Pils™) = 8Rroz\or? ~ 922) ~ 0ROZ\OR:  02?
and
Wl = e [V (v B
- m;n ¢ N :

The decoupled equation for the toroidal component of the ion velocity, u, is:

d/u 1 1 ~ coll
: Vi(pi| + pey) + e.-(V-P ) =0.

dt m;n m;n

This reduced system takes into account all the two-fluid effects associated with the
generalized Ohm’s law, the ion gyroviscosity, the ion and electron pressure anisotropies
and the diamagnetic perpendicular heat fluxes, within the assumed orderings. Unlike
other reduced two-fluid systems, it is valid for arbitrary density and temperature fluc-

tuations. As discussed before, it is consistently closed except for the collisional terms.



IV. FORMAL REPRESENTATION OF THE COLLISIONAL
MOMENTS FOR SINGLE ION SPECIES AND SMALL MASS RATIO

Consider the simple plasma with one ion species of unit charge.

Retain only leading-order terms in the m./m; — 0 limit.

Formal manipulations on the moments of the Fokker-Plank operator (integrations by
parts and expansions in m./m;) yield simplified expressions which are still applicable to
any collisionality regime and do not require the distribution functions to be close to

Maxwellians.

These simplified expressions are well suited for Chapman-Enskog, neoclassical or other

kinds of approximations.



For each species, define the thermal speed vy, = /p./(m.n), the dimensionless phase
space coordinate

Vo — Ugy(X, 1)

Utha (X7 t)

£ =

)

and the dimensionless distribution function

3
~ v
fa(£7X7 t) = l;fl/la fa(ua +vthoz€7 X, t) )

so that

[ fo(&x,t) = 1 and  [dPE €& ful€.x,1) = 0.

Define also the collision frequencies:

4.4 4.4
cte nln A\, cte'nln A\,
poll = and v
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FOR THE COLLISIONAL FRICTION FORCE:

coll

v . 1 4 A

Fgoll _ _quoll _ e Sj 4+ T>
Uthe ENVthe
where
. 1 1. Of.
S = — [d&° d — [ ..
5‘@5(\5!) C‘” = 5‘@5(\5!) J

If the electron distribution function is expanded in a series of spherical harmonics,
fe = Yim fe,lm(lﬂ)Y}m(A, ©), S depends only on the fe,oo and fejgm components, and T depends
only on the fe,m components.

Notice that HQH ~ 1, [j/(envpe)| ~ (me/mi)l/Qé and \T\ ~ e/ (PeVihe) ~ (me/mi)l/Qqe/(pevtm).

SIMILAR EXPRESSIONS CAN BE OBTAINED FOR THE OTHER MOMENTS OF
THE COLLISION OPERATOR.



